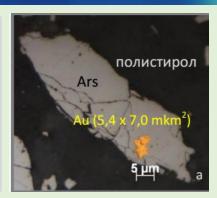


Интенсификация процессов переработки упорных Auсодержащих концентратов



Признаки упорности руды

Тонкая вкрапленность Аи в минералах-носителях.

Ассоциировано в большинстве случаев с сульфидными минералами, при измельчении стандартными способами вскрывается частично, основная масса его остается в минералах. При цианировании такое золото не растворяется, а в процессах гравитации и флотации извлекается вместе с минералами-носителями.

Руды, обладающие сорбционной способностью к растворенному в растворе цианида Au.

Глинистые и углерод-содержащие руды при предварительном цианировании руды или концентрата их содержащие, будут интенсивно сорбировать растворенное Au, приводя к его потерям в твердой фазе хвостов цианирования.

Руды, содержащие химические депрессоры Au – цианисиды, действие которых заключается в:

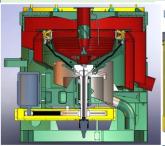
- повышении сорбционной активности компонентов руды или концентрата;
- образовании соединений, являющихся химическими депрессорами золота;
- пассивации поверхности золота и снижении динамики его растворения;
- увеличении солевого фона жидкой фазы пульпы, негативно сказывающемся на процессах извлечения золота из раствора.

Способы предварительной переработки руды

Тонкая вкрапленность Au в минералахносителях.

Предварительная концентрация Au, ультратонкое измельчение

Руды, обладающие сорбционной способностью к растворенному в растворе цианида Au.



Отмывка, выделение Cсодержащего продукта, применение пассиваторов C Руды, содержащие химические депрессоры Au – цианисиды.

Выделение цианисидов в отдельный концентрат с переработкой его в отдельном цикле, применение реакторного окисления

Упорный Au-содержащий концентрат

Методы переработки упорного Auсодержащего концентрата

Обжиг

Автоклавное выщелачивание

Бактериальное окисление

Albion - процесс

Вскрытие сульфидной матрицы 4FeAsS+13O₂+6H₂O=4FeSO₄+4H₃AsO₄
2FeS₂+7O₂+2H₂O=2FeSO₄+2H₂SO₄
4FeSO₄+O₂+2H₂SO₄=2Fe₂(SO₄)₃+2H₂O
Fe₂(SO₄)₃+2H₃AsO₄+4H₂O=2FeAsO₄·2H₂O+3H₂SO₄
Fe₂(SO₄)₃+3H₂O=Fe₂O₃+3 H₂SO₄

Fe₂(SO₄)₃+2H₂O=2FeOHSO₄+H₂SO₄

При недостаточном уровне окисления:

• образуется свободная сера или ее промежуточные формы окисления, которые приводят к: потреблению кислорода в цикле выщелачивания, увеличению расхода цианида за счет образования роданидов, пассивации поверхности золотин, что в общем итоге приводит к снижению извлечения Au.

При недостаточном количестве Fe в сравнении с As:

• образование арсенатов Fe не будет происходить полностью, при добавлении извести будут образовываться арсенаты Ca, которые в сравнении со скородитом более токсичные (II класс).

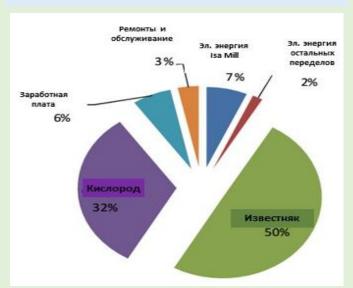
LeachOx - процесс

Поверхностное окисление

При недостаточном уровне окисления:

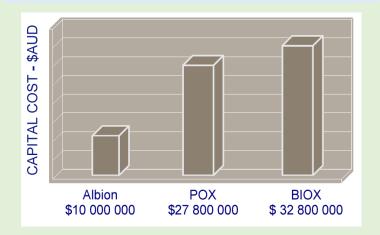
• образуется свободная сера или ее промежуточные формы окисления, которые приводят к: потреблению кислорода в цикле выщелачивания, увеличению расхода цианида за счет образования роданидов, пассивации поверхности золотин, что в общем итоге приводит к снижению извлечения Au.

Duncan W. Turner PhD & Mike Hourn



Albion - процесс

Ультратонкое измельчение в мельницах Isa Mill 80% кл.-12 мкм



Окисление кислородом при атмосферном давлении. t=85 град. C

LeachOx - процесс

Ультратонкое измельчение в 80% кл.-12 -10 мкм

Поверхностное окисление кислородом при атмосферном давлении. t=25 град. C

Достоинства:

- Низкие капитальные и эксплуатационные затраты;
- Простота технологического и технического реализации процесса.

Недостатки:

• Ограниченность применения (не применим при включении Au в кристаллическую решетку минералов)

Сравнение процессов

Albion – процесс

Принцип: осуществляется практически полный процесс разложения сульфидов с образованием окисленных минералов и переходом части металлов в раствор.

- При темп. 80-95°C, pH=5,5 расходы реагентов:
- Кислород 315 кг/т концентрата;
- Известняк для снижения кислотности 29 кг/т концентрата.
- Для образования скородита необходимо растворенное Fe в соотношении: Fe:As=3,5:1.
- Для процесса ультратонкого измельчения применяются мельницы типа IsaMill.
- Для диспергации кислорода применяются системы HyperSparge.

LeachOx – процесс

Принцип: подавление химической активности сульфидов после ультратонкого измельчения перед цианированием.

- Расход кислорода 22-28 кг/т концентрата.
- pH=8,5-10, температура 25°C.
- При содержании 78-80 % класса минус 10 мкм извлечение золота 90% на сорбции.
- Незначительное количество железа, переходящее в раствор, осаждается в виде гидроксидов, инертных при цианировании.
- Для процесса ультратонкого измельчения применяются мельницы совместно Российско-Казахстанского производства.
- Для диспергации кислорода применяются телескопические диспергационные системы (ТДС) Российского производства.

Интенсификация процессов

Комбинирование

Обжиг

Автоклавное выщелачивание

Бактериальное окисление



Интенсификация процессов

Повышение эффективности существующих

Интенсификация процессов

